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A characterization is given for the class of all closed loop eigen-
vector sets which can be obtained with a given set of distinct closed

loop eigenvalues using state feedback. It is shown, furthermore, that

the freedom one has in addition to specifying the closed loop eigen-
values is precisely this: to choose one set of closed loop eigenvectors

from this class. Included in the proof of this result is an algorithm

—

for computing the matrix of feedback gains which gives the chosen closed
loop eigenvalues and eigenvectors. A design scheme based on these results l

is presented which gives the designer considerable freedom to choose the

distribution of the modes among the output components. One interesting

feature is that the distribution of a mode among the output components

e

can be varied even if the mode is not controllable.
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I.  INTRODUCTION

One of the most popular techniques for altering the response charac-
teristics of a control system is the application of linear state variable
feedback. In the past decade, considerable effort has been made to under-
stand exactly what feedback has to offer and what its limitations are.

The fact that one can use state feedback to assign the closed loop
system any desired self conjugate set of eigenvalues, provided that the
open loop system is controllable, is a well known and commonly used result.
For single input systems, this result is simple to derive and has been
known for some time. Eigenvalue placement in multi-input systems was
studied by Lagenhop [1], Popov [2], Wonham [3], Simon and Mitter [4], and
Brunovsky [5]. Wonham was the first to prove that this property of state
feedback also applies to controllable multi-input systems.

Eigenvalue Assignment in multivariable systems is still not well
understood, however. Unlike the single input case, specification of closed

loop eigenvalues does not define a unique closed loop system. Many eigen-

value placement routines offer little freedom to exploit this nonuniqueness.-

Exceptions are algorithms which allow one to specify a number of components
of the closed loop eigenvectors [6], [7], and algorithms designed to avoid
large feedback gains ([8] chapter 6, [9]).

The purpose of this paper is to identify the freedom offered by state
feedback beyond specification of the closed loop eigenvalues for the case

in which the desired closed loop eigenvalues are distinct. In section 2

of the paper, a characterization is given for the class of all closed loop
eigenvector sets which can be attained with a given set of distinct closed

loop eigenvalues. It is shown, furthermore, that the freedom one has




beyond specifying the closed loop eigenvalues is precisely this: to choose
one set from the class'of ""allowable' sets of closed loop eigenvectors.
Included in section 2 is an algorithm for computing the feedback gain
matrix which gives a closed loop system with the desired eigenvalues and
eigenvectors. Section 3 illustrates one use of eigenvector assignﬁent

in control system design. Eigenvectors may be selected to adjust the
distribution of the modes among the output components. One interesting
feature is that the distribution of a mode among the output components

can be varied even if the mode is not controllable.

Throughout the paper, the following notation will be used: R, C will
denote, respectively, the field of real numbers and the field of complex
numbers. For a matrix M which has n rows of numbers in R (C),Span {M} will
be the subspace of Rn(Cn) spanned by the colums of M, while Ker {M}
represents the Kernel of M (It should be clear from the context whether
the operations are over R or C). If a property is said to hold for ien,
this means that it holds for all i satisfying lgisn. For a complex number
c, c. will represent its complex conjugate. A set is described as self
conjugate if the complex conjugate of each of its members is contained in

the set.
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II. SIMULTANEOUS ASSIGNMENT OF CLOSED LOOP EIGENVALUES AND EIGENVECTORS

Consider the closed loop state equation
x(t) = (A + BF)x(t)x(t)

obtained by applying linear state variable feedback u(t) = Fx(t) to the
systen !

x(t) = Ax(t) + Bu(t)
where x(t)ef‘, u(t)ek‘, rank B = m . To aid in the development of the

results, we associate with each number AeR (C) the matrix
S, = [AI-A B]

and a compatibly partitioned matrix

whose columns constitute a basis for Ker {SA}‘ It is quite easy to show
that the columns of Nx are linearly independent if B has linearly indepen-

*
dent columns, and that N” = Nx .

It is well known that F may be chosen to yield any self conjugate set
of closed loop eigenvalues provided that the (A, B) is controllable; that

is, provided that
rank [B AB . . .An'lB]-n

or, equivalently (see [8]), that rank S, = n for all A¢C. Unless m = 1,
however, specification of a set of closed loop eigenvalues does not uniquely
define F. It is a simple matter to show that F is uniquely defined, if it
exists, by the selection of a set distinct eigenvalues together with a

corresponding set of eigenvectors, Hence the design freedom available beyond




|
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eigenvalue selection is that of choosing one of the possible closed loop
eigenvector sets.

Proposition 2.1, the main result of this paper, treats the case where
the closed loop eigenvalues are distinct. For this case necessary and suf-
ficient conditions for the existence of F which yields prescribed eigen-
\;alms and eigemvectors are given.* The proof includes a procedure for

computing F.

Proposition 2.1: Let {ki, ien} be a self conjugate set of distinct complex
numbers. There exists a matrix F of real numbers such that (A + BF) vi
= Aivi (ien) if and only if the following three conditions are satisfied

for ien.

l. wectors v, are linearly independent vectors in e
® . L]
2. v - \vj whenever Ai = Aj

3. v; € st{Nli}'

If F exists and rank B = m, then F is unique.

Proof: (Sufficiency)

Suppose that Vi ien,are chosen to satisfy the three conditions stated

in the proposition. Since v, ¢ Span{N, } for ien (condition 3), then A
i

can i)e expressed as L Nx ki for some vector kieRm(Cm), which implies
i . .
that
041 - A)vi +B Hliki = 0.

If F is chosen so that 'MA ki = Fvi, then [AiI - (AoBF)]vi = 0. What
i

remains in the proof is to show that a matrix F of real numbers satisfying

= Flvy v, « « v, ] = [w, w, g w ] (2.1)

w, =M k
i “xii

et TR L. S
‘

z

t Although not presented in this form, this result was obtained independently
and used implicitly by H. Kimura in his treatment of pole placement using
output feedback [10].
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can always be constructed.
If all n eigenvalues are real numbers, then Vi» W; are vectors of
real numbers and the matrix [v1 Vo o o an is nonsinguiar. For this

case

F=ww,... wn][\r1 Vy e e vn]'l.

For the case where there are complex eigenvalues, assume that A\ A;.

The second condition in the proposition states that Vi
*

that w; =W, The equation which must be solved then is

= v; which implies

F[vm+jvu vir-Ivir V] = ["lk’j"ll wir Y11 W] (2.2)
where the columns of V and W are Vis i=3, ...,n, and Wis 28, .i0l,

respectively, Multiplication of both sides of equation (2.2) from the

right by the nonsingular matrix

yields the equivalent equation

Flv V] = Wl.

IR V11 vir Y11
Clearly since Vi ien, are independent, the columns of [le Vi1 V] are

linearly independent. This procedure can obviously be applied for all

complex pairs of eigenvalues,

(Necessity)

Necessity of the first two conditions follows directly from elementary
matrix theory. Furthermore if (A+B!=)'vi =NV, then [Ail - l\]vi = BFvi :

written differently,

)
i
]




[*;1-A B] = 0. (2.3)

-Fvi

Since the columns of KA form a basis for the kernel of [AiI-A B], it
i

fbllows that v, e Span{NAi}.

Since A+BF is uniquely defined by‘its (distinct) eigenvalues and
eigenvectors, it is clear that F is unique whenever B has independent
colum vectors.

Q.E.D.

Remark: For the case where the selected eigenvalues are not distinct,
the conditions of Proposition are sufficient, and the last two conditions

are necessary.

It is interesting that controllability is not mentioned in this
proposition. The equivalence of controllability and pole assignability
implies that the three conditions in Proposition 2.1 cannot be satisfied
if the uncontrollable eigenvalues are not included in the selected set of
closed loop eigenvalues. This point deserves a few words of clarification.

If (A, B) is not controllable, then there exists an open loop eigen-

value A, and a vector p, satisfying p;S, = 0. This implies that p, is
1

an eigenvector of A? which is invariant under feedback; i.e.

T
(A+BF)Tpi = A pi = lipi .

Now for any X and v e Span{N,} there exists a matrix F (see the

proof of Proposition 2.1) satisfying (A+BF)v = Av . Hence

A; (V) = pj (A+BF)V = A(p; V)




and it follows that piN, = 0 for all A A

i
The important point is this: if the eigenvalues of the uncontrollable

subsystem obtained using Kalman's controllability decomposition (see [11]

or almost any linear systems text) are distinct, then they may be included

in the set of selected closed loop eigenvalues without violating the dis-

tinct eigenvalue assumption of Proposition 2.1. Even though an uncontrollable

eigenvalue x1 is invariant under feedback, there is considerable freedom,

as will be shown in section 3, to select v, € Span{NA }, although it is
i

clear from the last paragraph that v; must satisfy p}:vi #0.

i
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III.  APPLICATION TO CONTROL SYSTEM DESIGN

While the overall speed of response of the closed loop system is

determined by its eigenvalues, the "shape'' of the transient response depends
to a large extent on the closed loop eigenvectors. In the following para-
graphs it is shown that through eigenvector selection the designer has
considerable freedom to adjusf the distribution of the modes among the
various output components. In this sense, he may ''shape'" the response
characteristics of the system.

Consider again the closed loop system

x(t) = (A+BF)x(t)

together with an output equation
y(t) = Cx(t) .

where y(t)eRr, rank B=m, rank C=r, m3r. In terms of the (distinct) closed loop

eigenvalues Ai’ ien, and eigenvectors Vis ien, the output vector is given by

@ ;s
y@) = J.LZICvi(pixo)e

where
T -1
; [pl pz L A pn] o [vl vz e o o vn] -

A,
i s : :
a.e *t where a; is proportioned to Cvi. Hence

In other words, y(t) = i

i
T

"3

1

if Cv; = [1 0...0] then the ith mode appears only in the first

output conponeﬁt. If Cv, = 2 170w OJT it appears in the first

two outputs and is twice as large in yl(t) as it is in yz(t), etc.

-
-

¥

o A T

4__\21§;i’r7

Now consider the freedom available to assign Cv with, veNA, where A

i

is an arbitrary number in R (C). The colums of CNA span Rr(Cr), meaning
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that cv can be arbitrarily assigned, if and only if

AI-A B
rank = r + rank [AI-A B] (3.1)
cC 0

To see this, observe that there exists v e Span NA such that Cv = e if
and only if there is a solution to the equation

Bele R

A solution to this equation exists for every vector e iff

AI-A B AI-A B O
rank = rank .
cC 0 C 01

The rightmost matrix has rank r + rahk[AI-A B]. If (C, A) is observable,
this can be stated equivalently as follows: Cv, v € Span Ny, can be arbi-
trarily assigned provided that A is not a zero (as defined by Rosenbrock
[12]) of the transfer function matrix.

Even with the freedom to assign Cv, veN,,which exists if equation

A
3.1 holds, complete freedom to assign Cvi, ien, where v, are closed loop
eigenvectors, does not exist: the vectors Vis ien, must satisfy the con-
ditions of proposition 2.1. There are a few obvious constraints on the
vectors Cvi, ien. It is clear, for example, that if m=r, A is not an
uncontrollable eigenvalue, and (3.1) heclds, then Cvi=0 = vi=0 which is
not valid. Considering the linear independence requirement, it is also
clear that the number of modes which can be restricted to a single output
component is less than or equal to n-r+l,

The case in which an eigenvalue li is uncontrollable is quite interesting.

In the last section it was shown that the closed loop eigenvector v, must

satisfy vai # 0, where ATpi = Aipi . 1f
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AI-A B O AI-A B ]
rank | C 00| =rank | C O (3.3 :
pI 01 p} 0 |

then there exists a vector v,, viEin’ such that Cv; = . vai 0.
'l?tis implies that the mode can be eliminated entirely from the output
response (i.e. made unobservable) provided that the remaining vectors

o vj, jen, j#i, can be chosen to satisfy the conditions of Proposition 2.1.

To complete this section, we illustrate one design scheme which allows
a degree of transient response shaping. It is assumed that the uncon-
trollable eigenvalues are distinct. The steps of the procedure are as
follows:
1. Select distinct closed loop eigenvalues -- the set must include un-
controllable eigenvalues.
2. Select e;» the desired value of cvss for each eigenvalue. This choice
should be made on the basis of the desired distribution of modes among

output components.

3. Compute Vis W satisfying

Y A

If xi is an uncontrollable eigenvalue, the solution must satisfy

P‘{vi # 0. This inequality may be forced by solving

A, I-A B
< 1 vi
A e
ge p: 0 i .

if the leftmost matrix has rank r+1+rank[AiI-A B] .




4, If the vectors Vis ien are not linearly independent, alter one or more

of the vectors e ien, and return to step 3; otherwise proceed to step S.
S. Compute the feedback matrix and the closed loop system matrix. If the

transient response characteristics are not satisfactory alter one or

more of the vectors e according to the nature of the response, and

return to step 3.

Example: Consider the open loop system with matrices
-1.25 0.75 -0.75

A= 1 «1.5 -0.75
1 <3 -1,25
1 0
B= |0 1
0 1
1 0 0
C=
0 o 1

which has controllable eigenvalues at -1.25, -2.25, and an uncontrollable
eigenvalue at -0.5.
To illustrate the response shaping feature of the procedure suggested
in this section, it is assumed that the objective is to shift the controllable
eigenvalues to -5., -6., and to obtain a ''reasonable" response for the
initial condition [0 O l]T, which represents a disturbance in xs(t).
Table 1' gives three different closed loop systems which have eigenvalues
A, = =5, A

= -5, A, = -6, but which differ in their eigenvectors.

1 2 3
The first system in Table 1 was obtained using a standard modal con-

troller (see [8], chapters 5,6) of the form

* Computed answers have been rounded to three significant figures. Numbers
smaller in magnitude than 10-15 are shown as zero.
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1

u(t) = (a,8;p] * 3,2,p3)x(t)

where the following equations hold:

ATpl = -1.25p1, p'i‘p1 =1

(A + Bgp)p, = ~2.25p,, pyp, = 1 .
The constants ays 9 and the vectors g;> gzeRn were chosen to shift one
eigenvalue from -1.25 to -5.0, and then the second eigenvalue from -2.25
to -6.0, and to minimize the gain required for each shift. Figure 1 shows
the response of this system to a unit disturbance in xs(t).

The response of the first system is not satisfactory because of the
rather large slow mode component in yl(t). This mode is uncontrollable,satisfies
equation (3.3), and is eliminated in the output of system 2 (Figure 2). In this
system e,, e, were chosen to be equal to cv;, cvé, where v;, vi are the
eigenvectors corresponding to Az, AS in system 1. Note that the entries

of cv; have opposite signs.

To further illustrate the spirit of the procedure, it is assumed that
a positive going transient in yl(t) is desired for a positive disturbance
in a xs(t). This is accomplished in system 3 by simply choosing e, to have
components of the same sign, in this case e, = [.5 .S]T. Figure 3 gives

the response of the third system.
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IV.  CONCLUSIONS

Necessary and sufficient conditions for simultaneous eigenvalue, eigen-
vector assignment have been given for the case where the desired eigenvalues
are distinct. The corresponding design procedure based on this result gives
the designer considerable freedom to select the distribution of modes (whether
controllable or not) among the output components.

The shortcoming of the design procedure is that it is ad hoc in nature.
In future research, an attempt will be made to develop a systematic design
procedure allowing the designer to '"shape" in some sense the average tran-

sient response characteristics of the system.
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Systen 1

System 2

System 3

Selected Vectors Closed Loop Matrix
e, e eg A+BF
-5.78 5.28 -7.44

modal control

used -.0784 -.421  -4.79
-.0784  .0788  -5.29

0 -.889  .990 -5.78 0 -2.16
0 .33  .0990 -.0784  -.5 ~4.72
-.0784 0 -5.22

= .990 -6.11 0 1.11

0 .5  -.0990 w5 el -4.3%9
-111 0 -4.89

Table 1
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